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ABSTRACT

The differential evolution approach has becomeacaning optimization technique in recent decadesas been
successfully applied to solve various problemsdiersce and engineering fields; however, few apfiboa have been
addressed in the domain of supply chain managenherthis paper, an improved DE approach is propdseche
aggregate planning problem in a supply chain. Tiyer@ach comprises an improved DE variant with aneirbased
constraint handling mechanism called the winneetianstrained differential evolution. To test geformance of the
approach, it is verified and compared with most oumly used DE approaches. The experimental studwshhat the
winner-based constrained differential evolutiongesses particular qualities in convergence, acgusa reliability for

the aggregate planning problem in supply chains.
KEYWORDS: Supply Chain Management, Operations Management,efyage Planning, Differential Evolution

1. INTRODUCTION

Aggregate planning (AP) is an intermediate-rangeacty planning. It aims to achieve a satisfactoryduction
plan that will effectively utilize organization’ssource, such as workforce, inventory and subcttiaer a specific time
horizon ranged from 2 to 12 months for a givendafetesources and constraints (Al-E-Hashem, AryaadzB Sadjadi,
2012; Graves, 2002; Stevenson, 2009). Such plamprisiglem usually involves one product or a familypmducts so that
considering the problem from an aggregate viewpisirjustified. The AP problem has attracted considke attention
from both practitioners and academia. The pioneéithis research, Holt, Modigliani, and Simon (HdWodigliani, &
Simon, 1955), first revealed the importance, olletaand solutions of the problem in 1955. They faine and quantify
an AP problem by quadratic approximation to a gote function involving the inventory, overtime, caemployment.
They also calculate the optimum solution of thebfgm in the form of a linear decision rule knownL&R model. The
approach was applied to a paint factory to genexgtgegate production plans. Hanssmann and Hessghtamn & Hess,
1960)developed an AP model focused on minimizirgttdtal cost of regular payroll, overtime, hiringyoff, inventory
and shortage which incurred over a given time looriRakes et al. (Rakes, Franz, & James Wynne,)19®posed a
chance-constrained goal programming approach tgibelem. It is a special case of stochastic plagnd production
scheduling which incorporates probabilistic proddetmand requirements. An overview of the researelass given by
Nam and Logendran (Nam & Logendran, 1992). Theypitenthe research literatures which consist of adiles from
17 journals and 14 books, presenting classificasicireme and various techniques into a broad framkewWbe techniques
ranged from simple graphical methods to sophigttdteuristics can be broadly categorized into types: those that

guarantee an optimum solution and those that do not
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In recent decades, since the great developmerdurigtics and modeling approaches, there is a trenesearch
communities to solve AP problems by modern hearigitimizers. Paiva and Morabito(Paiva & MorabR609) proposed
an optimization model to support decisions in thHe problem of the sugar and ethanol milling factdrye model is a
mixed integer programming formulation based onitigeistrial process selection method and produdttsizing model.
Sillekens et al. (Sillekens, Koberstein, & Suhl,12p presented a mixed integer linear programminglehdor the AP
problem of flow shop production lines in automotinelustry. In contract to traditional approachés model considers
discrete capacity adaptions which originated fr@ohhical characteristics of assembly line, workutagon and shift
planning. Its solution framework containing diffatgrimal heuristics and preprocessing technigsesnibedded into a
decision support system. Zhang et al. (Zhang, Zh&@p, & Kaku, 2012)presented a mixed integerdinprogramming
model which characterizesan AP problem with cagaeipansion in a manufacturing system. The systectudes
multiple activity centers, and they use a heurisigthod based on capacity shifting with linear xaton to optimize the
model. Ramezanian et al. (Ramezanian, Rahmani, r&ifgzour, 2012) introduced an AP problem which udids a multi-
period, multi-product, and multi-machine with setdgcisions. They develop a mixed integer lineagmmming model

and use Genetic Algorithm (GA) and Tabu searclsédving the model.

The differential evolution (DE) algorithm is a silapyet powerful evolutionary algorithm for optimiian
problems. It has become a promising heuristic tigghmin recent decades. The algorithm was propbgestorn and Price
in 1995 while trying to solve the Chebyshev polyiarfitting problem (Storn & Price, 1995). DE igpawerful stochastic
global optimizer that stems from the genetic aringahlgorithm also developed by Price. With a ranfoinitialized
population, DE employs simple mutation and cross@gerators to generate new offspring, and thdizesi a selection
technique to determine whether the offspring wélplace their parents into next generation. It hesnbsuccessfully
applied to solve various problems in the scientifitd engineering field, such as pattern recogniffdmagatam Das &
Konar, 2009; Maulik & Saha, 2009), power dispata@hibu, 2009; Varadarajan & Swarup, 2008), control
systems(Iruthayarajan & Baskar, 2009; Tang, Xu&a, 2008), and others (S. Das & Suganthan, 20ldWy. that DE has

been proved to be a very efficient and robust teghm

In the fact of many successful DE applications hbgen addressed in the scientific and engineeraid, ffew
works have been done in the management field, ggdlyem the area of aggregate planning. Besidesthe course of
solving AP problems by DE, we discover a better ddategy that possesses particular performancthéoproblem than
commonly used DE approaches. Moreover, DE alssladiood constraint handling mechanism to deal suitth a highly
constrained AP problem. Therefore, in this paper,sblving AP problems a novel DE approach calledimner-based
constrained differential evolution, which comprisegsimproved DE strategy and a constraint handiieghanism called
the winner-based constraint handling mechanisnmpragposed. After experimental studies, the resutiswsthat the
approach possesses particular performance in cqgewvee, accuracy, and reliability for solving AP lgdeims than the most

commonly used DE approaches.

The rest of the paper is organized as follows:ieec® presents full details of the winner-based st@ined
differential evolution, comprising the improved Dffrategy and the winner-based constraint handlieghanism for
solving AP problems. The evaluation experimentsddgplayed in section 3, and some conclusionsarehbefindings and

managerial implications are addressed in the &eation.
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2. THE WINNER-BASED CONSTRAINED DE APPROACH

To enhance the local search ability and to statdglkerate the convergence speed for DE to hightgtcained AP
problems, an improved DE mutation strategy intragigian exponential probability distribution is inved. The scale
factor F is randomly generated by introducing an appropr&atponential probability distribution, which caropide a
good compromise between the probability of havinigrge number of small perturbations and a smaibability of
having large perturbations. The density functiorthef exponential probability distribution is given(1). In this function,
it is obvious that we can control the variance bgrging the location parameteand the scale parameterThe process
of generating the scale factérby the exponential probability distribution furantiis presented in Algorithm 1.

f(x):iexp(—ﬂ), —co<Xx<o, abp>C

2b b )
Algorithm 1: Generating the Scale Factor- by the Exponential PDF
Table 1
1| ul=rand0,1]; | % uniform random number [0, 1]
2| u2=randO,1];
3 if ul> 0.5
4 | x=a+ b*In(u2); % Natural logarithm
5 else
6 X = a-b*In(u2) ;
7 end
8 Fexp = abs(x) ; % absolute value

To handle constraints for highly constrained A Blgems, we propose a mechanism called the winrezeba
constraint handling mechanism. The mechanism isc&sin-making scheme based on the score of adeéitted scoring
function to decide a winner among candidate satstiwithin a constrained search space, as follows:

An AP problem with many equality and inequality straints can be formally expressed as the fornanati

Minimize T (%) @)
4 < i =

subject tog'(x) <0,1=1..p 3)

hj(x)=0,j=1, .. @

0 x=0

The boundaries, equality constraints in (4), catréesformed into the form of inequality constraint

Ih(x)|-£<0 -

wheref is the tolerance of a very small positive valuewstd. Therefore, all constraints can be expressed a

[ (x)<0,k=12,..r (6)
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Then a closeness function, defined by(7), can lcerporated to measure the closeness of a solubiaiet
feasible region of a constrained problem. A solutkoof the problem is called a candidate. If the fumttivalue of a

candidate compared with others is larger, it carelgarded as closer to the feasible region thaotthers.

r
c(x) = Y- min(0, -1, (x))
k=1 (7)
Thus, a scoring function measuring the degree odlidates in the winner-based constraint handlinghaeism

can be defined by:

c(x)  if c(x)<0

score(x) = {exp(— f (X)) ow.

(8)

score(x) <1

Where , ¢(X) is the closeness functiofi(x) the objective function, and ex)(the exponential

transformation function.

The scoring function is used as decision-makintgia. It selects a winner into next generationclhhas a
highest score against other candidates. If theesaba candidate is less than 0, which means theidate violates at least
one constraint and is classified as infeasibleeAferations in the evolving process, the winndrtend to feasible region
rather than infeasible and to a good solution gadiguln addition, the violations of the objectiand constraints are
considered, leaving the annoying penalty paramefech needs to be fine-tuned while using the pgnéinction

approach.

3. EXPERIMENTAL STUDY
3.1 Test Experiments

In this section, the performance of the winner-Hasenstrained differential evolution for solvingnstrained AP
problems is presented. The approach is verifiedcamspared with three most commonly used DE appesmddE/rand/1,
DE/best/1 and DE/target-to-best/1. Some test iostof the AP problem, from small-sized to largeedj are given from
Red Tomato Tools, a manufacturer of gardening eqeig in a supply chain with highly fluctuated demaaquirements
and constraints in Mexico, illustrated in (ChopraMeindl, 2007; Wang & Yeh, 2014). All of the teststances, DE
approaches, and the winner-based constraint handtiechanism are coded by MATLAB R2012a and execoted
laptop PC with Intel Core 2 Dual 2.0 GHz CPU, 4 BBM, and 64-bit Windows 7 operating system. To lelish the
benchmark of comparative performance, they are @sed by LINGO optimization solver to present glbbptimum as

lower bound. We also define a quality measuremalied the percentage of deviation, denoted &&%and expressed in
(9), to present the diversity of experimented omteowith corresponding lower bound. Where in (%,OV is the best

objective value and-B the lower bound.

%De«/:%xmo%

(9)
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In these DE experiments, as suggested, the pomulsize of a trial is set to 8 times of the dimenality of the
test instance. The crossover r@reand the scale factdt are set to 0.9 and 0.85 respectively. While initheroved DE
strategy, we use the exponential probability disttion function with the parameters at0 andb=0.5 to generate the
values of the scale factét Termination criteria of a trial are set to eitlhess than 5% of closeness with its corresponding
lower bound or reaching to 5,000 iterations. Thpeginmental results of an instance for each DE eagraare collected
from 10 trials of execution. The report statistice the stop iteration, best objective value, meahstandard deviation of
the best objective values, the iteration at whiel score starts greater than 0, and the percewfageviation. The
convergent variations of the best objective valaed the scores over iterations for each approaetpasented from
Figure 1 to Figure 4. The report statistics are alwown in Table 1 and Table 2.
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Figure 1: Convergent Variations Over Iterations forthe Proposed Approach
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Figure 2: Convergent Variations Over lterations for DE/Rand/1
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Figure 3: Convergent Variations Over Iterations for DE/Best/1
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Figure 4: Convergent Variations Over Iterations for DE/Target-to-best/1

Table 1: Report Statistics

Experiment 1 2 3 4
Periods 3 6 9 12
Worker Type 1 2 3 4
Num.of Para. 24 48 72 96
Num.of Constr. 12 42 90 156
DE Strategy LB 152 304 456 612  Average
Trer. (Stop) 1,162 2,457 3.201 1523 2,858
Best 158 315 473 635 395
Mean 1479 4314 5,173 5,650 4154
Lmproved DE o/ e 2,787 7943 10827 13465 8,755
Iter. (Score0) 16 73 143 156 105
2%Dev 3.8% 3.6% 3.7% 3.8% 3.7%
Tter. (Stop) 5.000 5.000 5.000 5.000 5.000
Best 2488 32594 81402 102683 54794
Mean 5955 36,120 NaN NaN .
DEfrandl ¢ i Dev 3,737 5,386 NaN NaN .
Trer. (Score=0) 37 757 »5000 =500 7
%iDev 1,536.6% 10,621.8% 17,751.2% 16.679.9% 11,647.4%
Tter. (Stop) 3227 5,000 5,000 5,000 1557
Best 58 2036 12344 31920 11615
Mean 517 10248 28301 51237  22.826
DEbestl s Dev 2793 10041 13861 16133 10,707
Tter. (Score>0) 17 96 23 555 23
2:Dev 39%  569.7% 2.607.0% 5.1157% 2.074.1%
Trer. (Stop) 3.045 5.000 5.000 5.000 1511
Best 157 1,534 9752 24527 8,993
DEftarget-to- Mean 1474 8.822 25414 44233 19.986
best/l Std Dev 2,567 8443 13853 15340 10,051
Tter. (Score>0) 17 74 207 598 24
2%Dev 3.5%  404.8% 20385% 3.907.7% 1.588.6%
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Table 2: Comparative Performance

DE Strategy Iterations Best Mean Std.Dev Iter.(Score=0) YeDev
Improved DE 100% 100%  100% 100%s 100% 100%
DE/rand/1 175% 13.865% - - - 313,523%
DE/best/1 159%  2.939% 549% 122% 213%  55.830%
DE/target-to-hest/1 158%  2275% 481% 115% 214%  42.762%

3.2 Experiment Discussion

These experimental results show that the winneedba®onstrained differential evolution provides rekahle

performance for solving the AP problem than thasmmonly used DE approaches, discussed as follows:

The convergent variations over iterations, fromukégl to Figure 4, show that at the beginning efaition, the
best objective values for each DE approach havieehigegree of volatility. Even after more iteratiwe best
objective value has reached a small value, itlisrsfieasible, because the score is still lessitBawhich means at
least one constraint is still violated. At thisggathe winner-based constraint handling mechamighkeep good

guiding, forcing the DE process substantially exploetter solutions toward the feasible region kjyic

After further iteration, the best objective vallende soon evolving into the feasible region bezdhe score is
turning into greater than 0. The winner-based caimdt handling mechanism will handle the DE process
exploiting better solutions without escaping frdme feasible region, leading the best objective vatiably and
gradually evolving toward the global optimum. It ke feature of the winner-based constraint hagdlin

mechanism.

In these figures and tables, all DE approachesegatore into the feasible region except DE/randte reason
may be attributed to the great randomness of thproapgh which needs more efforts to explore in &lkig
constrained and large multi-dimensional space. Ty limit the effectiveness and ability of its éoqation.
Besides, the improved DE strategy can explore andlve into the feasible region better than others tlarge
degree. It is at about 105 iterations in averagiebthan the other DE approaches: DE/best/1 atit22ations,
DE/target-to-best/1 at 224, and DE/rand/1 is thestoThe performance of the improved DE strategy fo
exploring the feasible region is times better tidEYbest/1 (213%) and DE/target-to-best/1 (214%avmrage

(see Table 2), especially to large-sized problesaes Table 1).

After evolving into the feasible region, the impealv DE strategy will quickly and accurately explo#tter
solutions toward the global optimum in less itevatiat 2,858 iterations in average. It is also sopeo the
others: DE/best/1 is at 4,557, DE/target-to-best/4,511, and DE/rand/1 is still the worst. Thef@rnance of the
improved DE strategy for exploiting the best ohijextvalue is better than DE/rand/1 (175%), DE/Heét59%)
and DE/target-to-best/1 (158%) in average. It istiwvanentioning that the improved DE strategy caplawe
inside the acceptance level of corresponding Idyeeind in less than 5,000 iterations for all siz¢hef problems,
while other DE approaches can only do for smakdiproblems. We conclude that the improved DE esgsat

gains a good convergence to the optimum than athers

Apparently, other statistics in Table 2, Best, Me&td. Dev, andDev, have also shown that the improved DE
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strategy with the winner-based constraint handlimgchanism gains greater performance than the GtH2E

approaches.

There fore, we can conclude that the improved D&tesgy with the winner-based constraint Handling na@ism
possesses particular quality in convergence, acguaad reliability for solving the AP problem th#re Most commonly
used DE approaches of DE/rand/1, DE/best/1, andaiifet-to-best/1.

4. CONCLUSIONS
In this paper, we first explore the importance bé tAP problem, from early precursors to contemporar

researches. Some significant researches and appicaare also presented. In the next context,fuledetails of the
winner-based constrained differential evolution,improved DE strategy with constraint handling nsubm called the
winner-based constraint handling mechanism, aredoted. In order to test the performance of ther@geh for solving
constrained AP problems, it is verified and comgaséh three commonly used DE approaches, DE/raoYbest/1 and
DE/target-to-best. Some test instances, from ssiedld to large-sized, illustrated in a supply chaia given for the
evaluation. The test results show that the winramed constrained differential evolution possessescplar quality in
convergence, accuracy, and reliability for solvkRRproblems than the most commonly used DE appesachDE/rand/1,
DE/best/1, and DE/target-to-best/1.
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