
 
Impact Factor(JCC): 1.5432- This article can be downloaded from www.impactjournals.us 

 

 

INNOVATIVE APPLICATION OF OPTIMIZATION IN SUPPLY CH AIN MANAGEMENT 

SAMUEL Y. RUAN SHIH-CHANG WANG 

Department of Business Administration, Lunghwa University of Science and Technology, Taiwan 

 

ABSTRACT 

The differential evolution approach has become a promising optimization technique in recent decades. It has been 

successfully applied to solve various problems in science and engineering fields; however, few applications have been 

addressed in the domain of supply chain management. In this paper, an improved DE approach is proposed for the 

aggregate planning problem in a supply chain. The approach comprises an improved DE variant with a winner-based 

constraint handling mechanism called the winner-based constrained differential evolution. To test the performance of the 

approach, it is verified and compared with most commonly used DE approaches. The experimental study shows that the 

winner-based constrained differential evolution possesses particular qualities in convergence, accuracy, and reliability for 

the aggregate planning problem in supply chains. 
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1. INTRODUCTION 

Aggregate planning (AP) is an intermediate-range capacity planning. It aims to achieve a satisfactory production 

plan that will effectively utilize organization’s resource, such as workforce, inventory and subcontract, over a specific time 

horizon ranged from 2 to 12 months for a given set of resources and constraints (Al-E-Hashem, Aryanezhad, & Sadjadi, 

2012; Graves, 2002; Stevenson, 2009). Such planning problem usually involves one product or a family of products so that 

considering the problem from an aggregate viewpoint is justified. The AP problem has attracted considerable attention 

from both practitioners and academia. The pioneers of this research, Holt, Modigliani, and Simon (Holt, Modigliani, & 

Simon, 1955), first revealed the importance, obstacles and solutions of the problem in 1955. They formalize and quantify 

an AP problem by quadratic approximation to a criterion function involving the inventory, overtime, and employment. 

They also calculate the optimum solution of the problem in the form of a linear decision rule known as LDR model. The 

approach was applied to a paint factory to generate aggregate production plans. Hanssmann and Hess(Hanssmann & Hess, 

1960)developed an AP model focused on minimizing the total cost of regular payroll, overtime, hiring, layoff, inventory 

and shortage which incurred over a given time horizon. Rakes et al. (Rakes, Franz, & James Wynne, 1984) proposed a 

chance-constrained goal programming approach to the problem. It is a special case of stochastic planning to production 

scheduling which incorporates probabilistic product demand requirements. An overview of the researches was given by 

Nam and Logendran (Nam & Logendran, 1992). They compile the research literatures which consist of 140 articles from 

17 journals and 14 books, presenting classification scheme and various techniques into a broad framework. The techniques 

ranged from simple graphical methods to sophisticated heuristics can be broadly categorized into two types: those that 

guarantee an optimum solution and those that do not. 
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In recent decades, since the great development in heuristics and modeling approaches, there is a trend in research 

communities to solve AP problems by modern heuristic optimizers. Paiva and Morabito(Paiva & Morabito, 2009) proposed 

an optimization model to support decisions in the AP problem of the sugar and ethanol milling factory. The model is a 

mixed integer programming formulation based on the industrial process selection method and production lot-sizing model. 

Sillekens et al. (Sillekens, Koberstein, & Suhl, 2011) presented a mixed integer linear programming model for the AP 

problem of flow shop production lines in automotive industry. In contract to traditional approaches, the model considers 

discrete capacity adaptions which originated from technical characteristics of assembly line, work regulation and shift 

planning. Its solution framework containing different primal heuristics and preprocessing techniques is embedded into a 

decision support system. Zhang et al. (Zhang, Zhang, Xiao, & Kaku, 2012)presented a mixed integer linear programming 

model which characterizesan AP problem with capacity expansion in a manufacturing system. The system includes 

multiple activity centers, and they use a heuristic method based on capacity shifting with linear relaxation to optimize the 

model. Ramezanian et al. (Ramezanian, Rahmani, & Barzinpour, 2012) introduced an AP problem which includes a multi-

period, multi-product, and multi-machine with setup decisions. They develop a mixed integer linear programming model 

and use Genetic Algorithm (GA) and Tabu search for solving the model. 

The differential evolution (DE) algorithm is a simple yet powerful evolutionary algorithm for optimization 

problems. It has become a promising heuristic technique in recent decades. The algorithm was proposed by Storn and Price 

in 1995 while trying to solve the Chebyshev polynomial fitting problem (Storn & Price, 1995). DE is a powerful stochastic 

global optimizer that stems from the genetic annealing algorithm also developed by Price. With a randomly initialized 

population, DE employs simple mutation and crossover operators to generate new offspring, and then utilizes a selection 

technique to determine whether the offspring will replace their parents into next generation. It has been successfully 

applied to solve various problems in the scientific and engineering field, such as pattern recognition (Swagatam Das & 

Konar, 2009; Maulik & Saha, 2009), power dispatch (Chiou, 2009; Varadarajan & Swarup, 2008), control 

systems(Iruthayarajan & Baskar, 2009; Tang, Xue, & Fan, 2008), and others (S. Das & Suganthan, 2011). Now that DE has 

been proved to be a very efficient and robust technique.  

In the fact of many successful DE applications have been addressed in the scientific and engineering field, few 

works have been done in the management field, especially in the area of aggregate planning. Besides, in the course of 

solving AP problems by DE, we discover a better DE strategy that possesses particular performance for the problem than 

commonly used DE approaches. Moreover, DE also lacks a good constraint handling mechanism to deal with such a highly 

constrained AP problem. Therefore, in this paper, for solving AP problems a novel DE approach called a winner-based 

constrained differential evolution, which comprises an improved DE strategy and a constraint handling mechanism called 

the winner-based constraint handling mechanism, is proposed. After experimental studies, the results show that the 

approach possesses particular performance in convergence, accuracy, and reliability for solving AP problems than the most 

commonly used DE approaches.  

The rest of the paper is organized as follows: section 2 presents full details of the winner-based constrained 

differential evolution, comprising the improved DE strategy and the winner-based constraint handling mechanism for 

solving AP problems. The evaluation experiments are displayed in section 3, and some conclusions, research findings and 

managerial implications are addressed in the final section.  
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2. THE WINNER-BASED CONSTRAINED DE APPROACH 

To enhance the local search ability and to stably accelerate the convergence speed for DE to highly constrained AP 

problems, an improved DE mutation strategy introducing an exponential probability distribution is involved. The scale 

factor F is randomly generated by introducing an appropriate exponential probability distribution, which can provide a 

good compromise between the probability of having a large number of small perturbations and a small probability of 

having large perturbations. The density function of the exponential probability distribution is given in (1). In this function, 

it is obvious that we can control the variance by changing the location parameter a and the scale parameter b. The process 

of generating the scale factor F by the exponential probability distribution function is presented in Algorithm 1. 

1
( ) exp( ), , , 0

2

x a
f x x a b

b b

−
= − − ∞ < < ∞ >

                                                                                  (1) 

Algorithm 1: Generating the Scale Factor F by the Exponential PDF 

Table 1 

1  u1 = rand[0, 1] ; % uniform random number [0, 1]  
2 u2 = rand[0, 1] ;  
3  if  u1 > 0.5  
4   x = a + b*ln(u2) ; % Natural logarithm 
5  else  
6   x = a - b*ln(u2) ;  
7  end  

8 expF
= abs(x) ; % absolute value 

 
To handle constraints for highly constrained A P problems, we propose a mechanism called the winner-based 

constraint handling mechanism. The mechanism is a decision-making scheme based on the score of a well-defined scoring 

function to decide a winner among candidate solutions within a constrained search space, as follows: 

An AP problem with many equality and inequality constraints can be formally expressed as the formulation: 

Minimize ( )f x                                                                                                                                                       (2) 

subject to 
( ) 0 , 1,  ..., ig x i p≤ =

                                                                                                                      (3) 

( ) 0 , 1,  ..., jh x j q= =
                                                                                                                                       (4) 

0x∀ ≥  

The boundaries, equality constraints in (4), can be transformed into the form of inequality constraints: 

( ) 0jh x ε− ≤
                                                                                                                                                      (5) 

whereε is the tolerance of a very small positive value allowed. Therefore, all constraints can be expressed as: 

( ) 0, 1, 2, ...,kl x k r≤ =
                                                                                                                                     (6) 
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Then a closeness function, defined by(7), can be incorporated to measure the closeness of a solution to the 

feasible region of a constrained problem. A solution x of the problem is called a candidate. If the function value of a 

candidate compared with others is larger, it can be regarded as closer to the feasible region than the others. 

1

( ) min(0, ( ))
r

k
k

c x l x
=

= −∑
                                                                                                                                 (7) 

Thus, a scoring function measuring the degree of candidates in the winner-based constraint handling mechanism 

can be defined by: 

( ) ( ) 0
( )

exp( ( )) . .

c x if c x
score x

f x o w

<
=  −                                                                                                           (8) 

Where ( ) 1score x ≤ , c(x) is the closeness function, f(x) the objective function, and exp(x) the exponential 

transformation function.  

The scoring function is used as decision-making criteria. It selects a winner into next generation which has a 

highest score against other candidates. If the score of a candidate is less than 0, which means the candidate violates at least 

one constraint and is classified as infeasible. After iterations in the evolving process, the winner will tend to feasible region 

rather than infeasible and to a good solution gradually. In addition, the violations of the objective and constraints are 

considered, leaving the annoying penalty parameter which needs to be fine-tuned while using the penalty function 

approach.  

3. EXPERIMENTAL STUDY 

3.1 Test Experiments 

In this section, the performance of the winner-based constrained differential evolution for solving constrained AP 

problems is presented. The approach is verified and compared with three most commonly used DE approaches, DE/rand/1, 

DE/best/1 and DE/target-to-best/1. Some test instances of the AP problem, from small-sized to large-sized, are given from 

Red Tomato Tools, a manufacturer of gardening equipment in a supply chain with highly fluctuated demand requirements 

and constraints in Mexico, illustrated in (Chopra & Meindl, 2007; Wang & Yeh, 2014). All of the test instances, DE 

approaches, and the winner-based constraint handling mechanism are coded by MATLAB R2012a and executed on a 

laptop PC with Intel Core 2 Dual 2.0 GHz CPU, 4 GB RAM, and 64-bit Windows 7 operating system. To establish the 

benchmark of comparative performance, they are also coded by LINGO optimization solver to present global optimum as 

lower bound. We also define a quality measurement called the percentage of deviation, denoted as %Dev and expressed in 

(9), to present the diversity of experimented outcome with corresponding lower bound. Where in (9), BOV  is the best 

objective value and LB  the lower bound. 

% 100%
BOV LB

Dev
LB

−= ×
                                                                                                                           (9) 
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In these DE experiments, as suggested, the population size of a trial is set to 8 times of the dimensionality of the 

test instance. The crossover rate Cr and the scale factor F are set to 0.9 and 0.85 respectively. While in the improved DE 

strategy, we use the exponential probability distribution function with the parameters of a=0 and b=0.5 to generate the 

values of the scale factor F. Termination criteria of a trial are set to either less than 5% of closeness with its corresponding 

lower bound or reaching to 5,000 iterations. The experimental results of an instance for each DE approach are collected 

from 10 trials of execution. The report statistics are the stop iteration, best objective value, mean and standard deviation of 

the best objective values, the iteration at which the score starts greater than 0, and the percentage of deviation. The 

convergent variations of the best objective values and the scores over iterations for each approach are presented from 

Figure 1 to Figure 4. The report statistics are also shown in Table 1 and Table 2.  

 

Figure 1: Convergent Variations Over Iterations for the Proposed Approach 

 

Figure 2: Convergent Variations Over Iterations for DE/Rand/1 
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Figure 3: Convergent Variations Over Iterations for DE/Best/1 

 

Figure 4: Convergent Variations Over Iterations for DE/Target-to-best/1 

Table 1: Report Statistics 
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Table 2: Comparative Performance 

 

3.2 Experiment Discussion 

These experimental results show that the winner-based constrained differential evolution provides remarkable 

performance for solving the AP problem than those commonly used DE approaches, discussed as follows:  

• The convergent variations over iterations, from Figure 1 to Figure 4, show that at the beginning of iteration, the 

best objective values for each DE approach have higher degree of volatility. Even after more iteration the best 

objective value has reached a small value, it is still infeasible, because the score is still less than 0, which means at 

least one constraint is still violated. At this stage, the winner-based constraint handling mechanism will keep good 

guiding, forcing the DE process substantially explore better solutions toward the feasible region quickly.  

• After further iteration, the best objective value can be soon evolving into the feasible region because the score is 

turning into greater than 0. The winner-based constraint handling mechanism will handle the DE process 

exploiting better solutions without escaping from the feasible region, leading the best objective value stably and 

gradually evolving toward the global optimum. It is the feature of the winner-based constraint handling 

mechanism.  

• In these figures and tables, all DE approaches can explore into the feasible region except DE/rand/1. The reason 

may be attributed to the great randomness of the approach which needs more efforts to explore in a highly 

constrained and large multi-dimensional space. That may limit the effectiveness and ability of its exploration. 

Besides, the improved DE strategy can explore and evolve into the feasible region better than others to a large 

degree. It is at about 105 iterations in average, better than the other DE approaches: DE/best/1 at 223 iterations, 

DE/target-to-best/1 at 224, and DE/rand/1 is the worst. The performance of the improved DE strategy for 

exploring the feasible region is times better than DE/best/1 (213%) and DE/target-to-best/1 (214%) in average 

(see Table 2), especially to large-sized problems (see Table 1).  

• After evolving into the feasible region, the improved DE strategy will quickly and accurately exploit better 

solutions toward the global optimum in less iteration, at 2,858 iterations in average. It is also superior to the 

others: DE/best/1 is at 4,557, DE/target-to-best/1 at 4,511, and DE/rand/1 is still the worst. The performance of the 

improved DE strategy for exploiting the best objective value is better than DE/rand/1 (175%), DE/best/1 (159%) 

and DE/target-to-best/1 (158%) in average. It is worth mentioning that the improved DE strategy can explore 

inside the acceptance level of corresponding lower bound in less than 5,000 iterations for all size of the problems, 

while other DE approaches can only do for small-sized problems. We conclude that the improved DE strategy 

gains a good convergence to the optimum than others.  

• Apparently, other statistics in Table 2, Best, Mean, Std. Dev, and %Dev, have also shown that the improved DE 
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strategy with the winner-based constraint handling mechanism gains greater performance than the other 3 DE 

approaches. 

There fore, we can conclude that the improved DE strategy with the winner-based constraint Handling mechanism 

possesses particular quality in convergence, accuracy, and reliability for solving the AP problem than the Most commonly 

used DE approaches of DE/rand/1, DE/best/1, and DE/target-to-best/1.  

4. CONCLUSIONS 

In this paper, we first explore the importance of the AP problem, from early precursors to contemporary 

researches. Some significant researches and applications are also presented. In the next context, the full details of the 

winner-based constrained differential evolution, an improved DE strategy with constraint handling mechanism called the 

winner-based constraint handling mechanism, are introduced. In order to test the performance of the approach for solving 

constrained AP problems, it is verified and compared with three commonly used DE approaches, DE/rand/1, DE/best/1 and 

DE/target-to-best. Some test instances, from small-sized to large-sized, illustrated in a supply chain are given for the 

evaluation. The test results show that the winner-based constrained differential evolution possesses particular quality in 

convergence, accuracy, and reliability for solving AP problems than the most commonly used DE approaches of DE/rand/1, 

DE/best/1, and DE/target-to-best/1. 
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